Flexible, tailored solutions and world-class expertise across the globe

CO₂ Storage & Low-Carbon Gas Opportunities in Georgia Block Energy Plc

Prof. Eric Oelkers & Max Richards

OPC UK LTD + 1-2 Apollo Studios, Charlton Kings Rd, London NW5 2SB + +44 (0)207 4281111 + london@opc.co.uk + www.opc.co.uk

Contents

	Carbon Storage	5
	Carbonate Mineralisation	7
	Carbfix Injection Well, Iceland	8
(କି) ବ୍ୟୁ ୧୦୦୦ ୧୦୦୦	Project III, Block Energy, Georgia	10
	CO ₂ Storage Potential	12
/®↓ ⊘₊?	Rates, Capacity, and Cost	13
	Implications & Conclusions	15

CO₂ Storage & Mineralisation

4 Q4 | December 23 CO₂ Storage in Georgia

CO₂ Storage Capacity

- Reservoir scale e.g
 Patardzeuli: 256Mt CO₂
 Storage (55 million cars)
- Basin scale e.g Block
 XIB/F: up to 8.7Gt CO₂
 (Türkiye emissions 20
 years)

CO₂ Storage Overview

CO₂ Storage Overview

Capture the CO_2 – usually direct exhaust from power station/industrial process. Store the CO_2 four main ways:

- 1. Structural trapping
- 2. Residual trapping
- 3. Dissolution/Solubility Trapping
 - Mineral Trapping (Mineralisation)

security

Storage

Increased

Mineral Trapping

Immediate solubility storage, gradual mineral storage through natural chemical processes

Basalt

Photo: H. Sigurdardottir

Carbonates

CO₂ dissolved in water

=

+ HCO₃ + H⁺ =

CO₃²⁻ + 2H⁺

(pH 3.5)

In Practice – CarbFix Injection Well

Carbonates

•Mainly Calcite (CaCO₃)

•95% mineralisation of injected CO₂ in one year.

 Successfully injected >100,000 tonnes of CO₂

Trade Offs

Challenges

- Requires an **abundance** of the right minerals (easy to dissolve & right elements)
- Large water requirments (20 tonnes of water to dissolve 1 tonne of CO₂)
- Thermodynamics need to be right

Advantages

- Does not require a cap rock
- Cheaper as CO₂ does not have to be highly compressed
- Very high capacity & rates in the right places
- Very low chance of leaks due to physically fixating the CO₂

Project III & CO₂ Storage Potential

CO₂ Storage Potential

BLOCK ENERGY PLC

- Middle Eocene volcaniclastic sequence in central Georgia – prolific hydrocarbon basin
- Previously un-examined for its CO₂ storage potential
- Study commissioned by Block Energy with leading CO₂ Storage consultancy OPC supported by Prof. Eric Oelkers

Zeolite cement occluding intragranular pore space

Middle Eocene Volcaniclastics

- 600m thick from 2400-3000m depth
- Abundance in Zeolites, a **highly reactive** mineral with large amounts of calcium
- An active aquifer with fresh-brackish water, possibly of the order of a billion barrels
- Ideal pressure/temperature conditions
- Connected fracture system

Results – Carbonation Rates

- Geochemical modelling: 250 days for 95% carbonation (CO₂ fixated as a rock). Compared to <u>1,000</u> years in sedimentary systems
- Increase in fracture size promote well injectivity productivity
- Reactions are pore space negative – meaning they create more space

Distance, m

7

6

percent volume change in

Annual

펍

Results – CO₂ Storage Capacity

- **Reservoir scale**: 256Mt CO₂ Storage (55 million cars)
- **Basin scale**: up to 8.7Gt CO₂ (Türkiye emissions 20 years)
 - Within the Tbilisi area
- Limits: water injection capacity. Project III supply 30 mbbl/d water with capacity to scale >100 mbbl/day
- **Injection rates:** Initial 0.1-0.3Mt/year.

Highly favourable unique area for permeant, abundant, CO₂ storage

Opportunities

- Opportunities for developing <u>net-zero</u> industry
 - Hydrogen
 - Fertilizer
 - Steel
 - Refined petroleum products
- Decarbonising electricity production
- Carbon credit market development & commercialisation

Thank you

- Max Richards, OPC
- Stephen James, Subsurface Manager Block Energy
- Paul Haywood, CEO Block Energy

max.richards@opc.co.uk